“And the angel lifted up his hand to heaven and sware by Him that liveth forever and ever that there should be time no longer.”—Rev. x., 6.


The earth was dead. The other planets also had died one after the other. The sun was extinguished. But the stars still shone; there were still suns and worlds.

In the measureless duration of eternity, time, an essentially relative conception, is determined by each world, and even in each world this conception is dependent upon the consciousness of the individual. Each world measures its own duration. The year of the earth is not that of Neptune. The latter is 164 times the former, and yet is not longer relatively to the absolute. There is no common measure between time and eternity. In empty space there is no time, no years, no centuries; only the possibility of a measurement of time which becomes real the moment a revolving world appears. Without some periodic motion no conception whatever of time is possible.

The earth no longer existed, nor her celestial companion, the little isle of Mars, nor the beautiful sphere of Venus, nor the colossal world of Jupiter, nor the strange universe of Saturn, which had lost its rings, nor the slow-moving Uranus and Neptune—not even the glorious sun, in whose fecundating heat these mansions of the heavens had basked for so many centuries. The sun was a dark ball, the planets also; and still this invisible system sped on in the glacial cold of starry space. So far as life is concerned, all these worlds were dead, did not exist. They survived their past history like the ruins of the dead cities of Assyria which the archæologist uncovers in the desert, moving on their way in darkness through the invisible and the unknown.

No genius, no magician could recall the vanished past, when the earth floated bathed in light, with its broad green fields waking to the morning sun, its rivers winding like long serpents through the verdant meadows, its woods alive with the songs of birds, its forests filled with deep and mysterious shadows, its seas heaving with the tides or roaring in the tempest, its mountain slopes furrowed with rushing streams and cascades, its gardens enameled with flowers, its nests of birds and cradles of children, and its toiling population, whose activity had transformed it and who lived so joyously a life perpetuated by the delights of an endless love. All this happiness seemed eternal. What has become of those mornings and evenings, of those flowers and those lovers, of that light and perfume, of those harmonies and joys, of those beauties and dreams? All is dead, has disappeared in the darkness of night.

The world dead, all the planets dead, the sun extinguished. The solar system annihilated, time itself suspended.

Time lapses into eternity. But eternity remains, and time is born again.

Before the existence of the earth, throughout an eternity, suns and worlds existed, peopled with beings like ourselves. Millions of years before the earth was, they were. The past of the universe has been as brilliant as the present, the future will be as the past, the present is of no importance.

In examining the past history of the earth, we might go back to a time when our planet shone in space, a veritable sun, appearing as Jupiter and Saturn do now, shrouded in a dense atmosphere charged with warm vapors; and we might follow all its transformations down to the period of man. We have seen that when its heat was entirely dissipated, its waters absorbed, the aqueous vapor of its atmosphere gone, and this atmosphere itself more or less absorbed, our planet must have presented the appearance of those great lunar deserts seen through the telescope (with certain differences due to the action of causes peculiar to the earth), with its final geographical configurations, its dried-up shores and water-courses, a planetary corpse, a dead and frozen world. It still bears, however, within its bosom an unexpended energy—that of its motion of translation about the sun, an energy which, transformed into heat by the sudden destruction of its motion, would suffice to melt it and to reduce it, in part, to a state of vapor, thus inaugurating a new epoch; but for an instant only, for, if this motion of translation were destroyed, the earth would fall into the sun and its independent existence would come to an end. If suddenly arrested it would move in a straight line toward the sun, with an increasing velocity, and reach the sun in sixty-five days; were its motion gradually arrested, it would move in a spiral, to be swallowed up, at last, in the central luminary.

The entire history of terrestrial life is before our eyes. It has its commencement and its end; and its duration, however many the centuries which compose it, is preceded and followed by eternity—is, indeed, but a single instant lost in eternity.

For a long time after the earth had ceased to be the abode of life, the colossal worlds of Jupiter and Saturn, passing more slowly from their solar to their planetary stage, reigned in their turn among the planets, with the splendor of a vitality incomparably superior to that of our earth. But they, also, waxed old and descended into the night of the tomb.


Had the earth, like Jupiter, for example, retained long enough the elements of life, death would have come only with the extinction of the sun. But the length of the life of a world is proportional to its size and its elements of vitality.

The solar heat is due to two principal causes—the condensation of the original nebula, and the fall of meteorites. According to the best established calculations of thermodynamics, the former has produced a quantity of heat eighteen million times greater than that which the sun radiates yearly, supposing the original nebula was cold, which there is no reason to believe was the case. It is, therefore, certain that the solar temperature produced by this condensation far exceeded the above. If condensation continues, the radiation of heat may go on for centuries without loss.

The heat emitted every second is equal to that which would result from the combustion of eleven quadrillions six hundred thousand milliards of tons of coal burning at once! The earth intercepts only one five hundredth millionth part of the radiant heat, and this one five hundredth millionth suffices to maintain all terrestrial life. Of sixty-seven millions of light and heat rays which the sun radiates into space, only one is received and utilized by the planets.

Well! to maintain this source of heat it is only necessary that the rate of condensation should be such that the sun’s diameter should decrease seventy-seven meters a year, or one kilometer in thirteen years. This contraction is so gradual that it would be wholly imperceptible. Nine thousand five hundred years would be required to reduce the diameter by one single second of arc. Even if the sun be actually in a gaseous state, its temperature, so far from growing less, or even remaining stationary, would increase by the very fact of contraction; for if on the one hand the temperature of a gaseous body falls when it condenses, on the other hand the heat generated by contraction is more than sufficient to prevent a fall in temperature, and the amount of heat increases until a liquid state is reached. The sun seems to have reached this stage.

The condensation of the sun, whose density is only one-fourth that of the earth, may thus of itself maintain for centuries, at least for ten million years, the light and heat of this brilliant star. But we have just spoken of a second source of heat: the fall of meteorites. One hundred and forty-six million meteorites fall upon the earth yearly. A vastly greater number fall into the sun, because of its greater attraction. If their mass equals about the one hundredth part of the mass of the earth, their fall would suffice to maintain the temperature,—not by their combustion, for if the sun itself was being consumed it would not have lasted more than six thousand years, but by the sudden transformation of the energy of motion into heat, the velocity of impact being 650,000 meters per second, so great is the solar attraction.

If the earth should fall into the sun, it would make good for ninety-five years the actual loss of solar energy; Venus would make good this loss for eighty-four years; Mercury for seven; Mars for thirteen; Jupiter for 32,254; Saturn for 9652; Uranus for 1610; and Neptune for 1890 years. That is to say, the fall of all the planets into the sun would produce heat enough to maintain the present rate of expenditure for about 46,000 years.

It is therefore certain that the fall of meteors greatly lengthens the life of the sun. One thirty-third millionth of the solar mass added each year would compensate for the loss, and half of this would be sufficient if we admit that condensation shares equally with the fall of meteorites in the maintenance of solar heat; centuries would have to pass before any acceleration of the planets’ velocities would be apparent.

Owing to these two causes alone we may, therefore, admit a future for the sun of at least twenty million years; and this period cannot but be increased by other unknown causes, to say nothing of an encounter with a swarm of meteorites.

The sun therefore was the last living member of the system; the last animated by the warmth of life.

But the sun also went out. After having so long poured upon his celestial children his vivifying beams, the black spots upon his surface increased in number and in extent, his brilliant photosphere grew dull, and his hitherto dazzling surface became congealed. An enormous red ball took the place of the dazzling center of the vanished worlds.

For a long time this enormous star maintained a high surface temperature, and a sort of phosphorescent atmosphere; its virgin soil, illumined by the light of the stars and by the electric influences which formed a kind of atmosphere, gave birth to a marvelous flora, to an unknown fauna, to beings differing absolutely in organization from those who had succeeded each other upon the worlds of its system.

But for the sun also the end came, and the hour sounded on the timepiece of destiny when the whole solar system was stricken from the book of life. And one after another the stars, each one of which is a sun, a solar system, shared the same fate; yet the universe continued to exist as it does today.


The science of mathematics tells us: “The solar system does not appear to possess at present more than the one four hundred and fifty-fourth part of the transformable energy which it had in the nebulous state. Although this remainder constitutes a fund whose magnitude confounds our imagination, it will also some day be exhausted. Later, the transformation will be complete for the entire universe, resulting in a general equilibrium of temperature and pressure.

“Energy will not then be susceptible of transformation. This does not mean annihilation, a word without meaning, nor does it mean the absence of motion, properly speaking, since the same sum of energy will always exist in the form of atomic motion, but the absence of all sensible motion, of all differentiation, the absolute uniformity of conditions, that is to say, absolute death.”

Such is the present statement of the science of mathematics.

Experiment and observation prove that on the one hand the quantity of matter, and on the other hand the quantity of energy also, remains constant, whatever the change in form or in position; but they also show that the universe tends to a state of equilibrium, a condition in which its heat will be uniformly distributed.

The heat of the sun and of all the stars seems to be due to the transformation of their initial energy of motion, to molecular impacts; the heat thus generated is being constantly radiated into space, and this radiation will go on until every sun is cooled down to the temperature of space itself.

If we admit that the sciences of today, mechanics, physics and mathematics, are trustworthy, and that the laws which now control the operations of nature and of reason are permanent, this must be the fate of the universe.

Far from being eternal, the earth on which we live has had a beginning. In eternity a hundred million years, a thousand million years or centuries, are as a day. There is an eternity behind us and before us, and all apparent duration is but a point. A scientific investigation of nature and acquaintance with its laws raises, therefore, the question already raised by the theologians, whether Plato, Zoroaster, Saint Augustine, Saint Thomas Aquinas, or some young seminarist who has just taken orders: “What was God doing before the creation of the universe, and what will he do after its end?” Or, under a less anthromorphic form, since God is unknowable: “What was the condition of the universe prior to the present order of things, and what will it be after this order has passed away?”

Note that the question is the same, whether we admit a personal God, reasoning and acting toward a definite end, or, whether we deny the existence of any spiritual being, and admit only the existence of indestructible atoms and forces representing an invariable sum of energy.

In the first case, why should God, an eternal and uncreated power, remain inactive? Or, having remained inactive, satisfied with the absolute infinity of his nature which nothing could augment, why did he change this state and create matter and force?

The theologian may reply: “Because it was his good pleasure.” But philosophy is not satisfied with this change in the divine purpose. In the second case, since the origin of the present condition of things only dates back a certain time, and since there can be no effect without a cause, we have the right to ask what was the condition of things anterior to the formation of the present universe.

Although energy is indestructible, we certainly cannot deny the tendency toward its universal dissipation, and this must lead to absolute repose and death, for the conclusions of mathematics are irresistible.

Nevertheless, we do not concede this.


Because the universe is not a definite quantity.


It is impossible to conceive of a limit to the extension of matter. Limitless space, the inexhaustible source of the transformation of potential energy into visible motion, and thence into heat and other forces, confronts us, and not a simple, finished piece of mechanism, running like a clock and stopping forever.

The future of the universe is its past. If the universe were to have had an end, this end would have been reached long ago, and we should not be here to study this problem.

It is because our conceptions are finite, that things have a beginning and an end. We cannot conceive of an absolutely endless series of transformations, either in the future or in the past, nor that an equally endless series of material combinations, of planets, suns, sun-systems, milky ways, stellar universes, can succeed each other. Nevertheless, the heavens are there to show us the infinite. Nor can we comprehend any better the infinity of space or of time; yet it is impossible for us to conceive of a limit to either, for our thought overleaps the limit, and is impotent to conceive of bounds beyond which there is no space nor time. One may travel forever, in any direction, without reaching a boundary, and as soon as anyone affirms that at a certain moment duration ceases, we refuse our assent; for we cannot confound time with the human measures of it.

These measures are relative and arbitrary; but time itself exists, like space, independently of them. Suppress everything, space and time would still remain; that is to say, space which material things may occupy, and the possibility of the succession of events. If this were not so, neither space nor time would be really measurable, not even in thought, since thought would not exist. But it is impossible for the mind even to suppress either the one or the other. Strictly speaking, it is neither space nor time that we are speaking of, but infinity and eternity, relative to which every measure, however great, is but a point.

We do not comprehend or conceive of infinite space or time, because we are incapable of it. But this incapacity does not invalidate the existence of the absolute. In confessing that we do not comprehend infinity, we feel it about us, and that space, as bounded by a wall or any barrier whatever, is in itself an absurd idea. And we are equally incapable of denying the possibility of the existence, at some instant of time, of a system of worlds whose motions would measure time without creating it. Do our clocks create time? No, they do but measure it. In the presence of the absolute, our measures of both time and space vanish; but the absolute remains.

We live, then, in the infinite, without doubting it for an instant. The hand which holds this pen is composed of eternal and indestructible elements, and the atoms which constituted it existed in the solar nebula whence our planet came, and will exist forever. Your lungs breathe, your brains think, with matter and forces which acted millions of years ago and will act endlessly. And the little globule which we inhabit floats, not at the center of a limited universe, but in the depth of infinity, as truly as does the most distant star which the telescope can discover.

The best definition of the universe ever given, to which there was nothing to add, is Pascal’s, “A sphere whose center is everywhere and circumference nowhere.”

It is this infinity which assures the eternity of the universe.

Stars, systems, myriads, milliards, universes succeed each other without end in every direction.

We do not live near a center which does not exist, and the earth, like the farthest star, lies in the fathomless infinite.

No bounds to space. Fly in thought in any direction with any velocity for months, years, centuries, forever, we shall meet with no limit, approach no boundary, we shall always remain in the vestibule of the infinite before us.

No bounds to time. Live in imagination through future ages, add centuries to centuries, epoch to epoch, we shall never attain the end, we shall always remain in the vestibule of the eternity which opens before us.

In our little sphere of terrestrial observation we see that, through all the transformations of matter and motion, the same quantity of each remains, though under new forms. Living beings afford a perpetual illustration of this: they are born, they grow by appropriating substances from the world without, and when they die they break up and restore to nature the elements of which they are composed. But by a law whose action never ceases other bodies are constituted from these same elements. Every star may be likened to an organized being, even as regards its internal heat. A body is alive so long as respiration and the circulation of the blood makes it possible for the various organs to perform their functions. When equilibrium and repose are reached, death follows; but after death all the substances of which the body was formed are wrought into other beings. Dissolution is the prelude to recreation. Analogy leads us to believe that the same is true of the cosmos. Nothing can be destroyed.

There is an incommensurable Power, which we are obliged to recognize as limitless in space and without beginning or end in time, and this Power is that which persists through all the changes in those sensible appearances under which the universe presents itself to us.

For this reason there will always be suns and worlds, not like ours, but still suns and worlds succeeding each other through all eternity.

And for us this visible universe can only be the changing appearance of the absolute and eternal reality.


It is in virtue of this transcendent law that, long after the death of the earth, of the giant planets and the central luminary, while our old and darkened sun was still speeding through boundless space, with its dead worlds on which terrestrial and planetary life had once engaged in the futile struggle for daily existence, another extinct sun, issuing from the depths of infinity, collided obliquely with it and brought it to rest!

Then in the vast night of space, from the shock of these two mighty bodies was suddenly kindled a stupendous conflagration, and an immense gaseous nebula was formed, which trembled for an instant like a flaring flame, and then sped on into regions unknown. Its temperature was several million degrees. All which here below had been earth, water, air, minerals, plants, atoms; all which had constituted man, his flesh, his palpitating heart, his flashing eye, his armed hand, his thinking brain, his entrancing beauty; the victor and the vanquished, the executioner and his victim, and those inferior souls still wearing the fetters of matter,—all were changed into fire. And so with the worlds of Mars, Venus, Jupiter, Saturn, and the rest. It was the resurrection of visible nature. But those superior souls which had acquired immortality continued to live forever in the hierarchy of the invisible psychic universe. The conscious existence of mankind had attained an ideal state. Mankind had passed by transmigration through the worlds to a new life with God, and freed from the burdens of matter, soared with an endless progress in eternal light.

The immense gaseous nebula, which absorbed all former worlds, thus transformed into vapor, began to turn upon itself. And in the zones of condensation of this primordial star-mist, new worlds were born, as heretofore the earth was.

So another universe began, whose genesis some future Moses and Laplace would tell, a new creation, extra-terrestrial, superhuman, inexhaustible, resembling neither the earth nor Mars, nor Saturn, nor the sun.

And new humanities arose, new civilizations, new vanities, another Babylon, another Thebes, another Athens, another Rome, another Paris, new palaces, temples, glories and loves. And all these things possessed nothing of the earth, whose very memory had passed away like a shadow.

And these universes passed away in their turn. But infinite space remained, peopled with worlds, and stars, and souls, and suns; and time went on forever.

For there can be neither end nor beginning.

The End of Omega: The Last Days of the World

Top of Page